Copied to
clipboard

G = C3×C22.F5order 240 = 24·3·5

Direct product of C3 and C22.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C22.F5, C159M4(2), Dic5.3C12, C5⋊C82C6, C2.6(C6×F5), (C2×C6).1F5, (C2×C30).4C4, C22.(C3×F5), C52(C3×M4(2)), C6.20(C2×F5), C30.20(C2×C4), C10.6(C2×C12), (C2×C10).2C12, (C3×Dic5).7C4, Dic5.8(C2×C6), (C2×Dic5).5C6, (C6×Dic5).12C2, (C3×Dic5).28C22, (C3×C5⋊C8)⋊6C2, SmallGroup(240,116)

Series: Derived Chief Lower central Upper central

C1C10 — C3×C22.F5
C1C5C10Dic5C3×Dic5C3×C5⋊C8 — C3×C22.F5
C5C10 — C3×C22.F5
C1C6C2×C6

Generators and relations for C3×C22.F5
 G = < a,b,c,d,e | a3=b2=c2=d5=1, e4=c, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d3 >

2C2
5C4
5C4
2C6
2C10
5C8
5C2×C4
5C8
5C12
5C12
2C30
5M4(2)
5C24
5C24
5C2×C12
5C3×M4(2)

Smallest permutation representation of C3×C22.F5
On 120 points
Generators in S120
(1 100 60)(2 101 61)(3 102 62)(4 103 63)(5 104 64)(6 97 57)(7 98 58)(8 99 59)(9 86 51)(10 87 52)(11 88 53)(12 81 54)(13 82 55)(14 83 56)(15 84 49)(16 85 50)(17 94 119)(18 95 120)(19 96 113)(20 89 114)(21 90 115)(22 91 116)(23 92 117)(24 93 118)(25 45 66)(26 46 67)(27 47 68)(28 48 69)(29 41 70)(30 42 71)(31 43 72)(32 44 65)(33 108 74)(34 109 75)(35 110 76)(36 111 77)(37 112 78)(38 105 79)(39 106 80)(40 107 73)
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)(50 54)(52 56)(57 61)(59 63)(66 70)(68 72)(74 78)(76 80)(81 85)(83 87)(89 93)(91 95)(97 101)(99 103)(106 110)(108 112)(114 118)(116 120)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)
(1 109 46 23 53)(2 24 110 54 47)(3 55 17 48 111)(4 41 56 112 18)(5 105 42 19 49)(6 20 106 50 43)(7 51 21 44 107)(8 45 52 108 22)(9 90 65 73 98)(10 74 91 99 66)(11 100 75 67 92)(12 68 101 93 76)(13 94 69 77 102)(14 78 95 103 70)(15 104 79 71 96)(16 72 97 89 80)(25 87 33 116 59)(26 117 88 60 34)(27 61 118 35 81)(28 36 62 82 119)(29 83 37 120 63)(30 113 84 64 38)(31 57 114 39 85)(32 40 58 86 115)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,51)(10,87,52)(11,88,53)(12,81,54)(13,82,55)(14,83,56)(15,84,49)(16,85,50)(17,94,119)(18,95,120)(19,96,113)(20,89,114)(21,90,115)(22,91,116)(23,92,117)(24,93,118)(25,45,66)(26,46,67)(27,47,68)(28,48,69)(29,41,70)(30,42,71)(31,43,72)(32,44,65)(33,108,74)(34,109,75)(35,110,76)(36,111,77)(37,112,78)(38,105,79)(39,106,80)(40,107,73), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(57,61)(59,63)(66,70)(68,72)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(97,101)(99,103)(106,110)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120), (1,109,46,23,53)(2,24,110,54,47)(3,55,17,48,111)(4,41,56,112,18)(5,105,42,19,49)(6,20,106,50,43)(7,51,21,44,107)(8,45,52,108,22)(9,90,65,73,98)(10,74,91,99,66)(11,100,75,67,92)(12,68,101,93,76)(13,94,69,77,102)(14,78,95,103,70)(15,104,79,71,96)(16,72,97,89,80)(25,87,33,116,59)(26,117,88,60,34)(27,61,118,35,81)(28,36,62,82,119)(29,83,37,120,63)(30,113,84,64,38)(31,57,114,39,85)(32,40,58,86,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,51)(10,87,52)(11,88,53)(12,81,54)(13,82,55)(14,83,56)(15,84,49)(16,85,50)(17,94,119)(18,95,120)(19,96,113)(20,89,114)(21,90,115)(22,91,116)(23,92,117)(24,93,118)(25,45,66)(26,46,67)(27,47,68)(28,48,69)(29,41,70)(30,42,71)(31,43,72)(32,44,65)(33,108,74)(34,109,75)(35,110,76)(36,111,77)(37,112,78)(38,105,79)(39,106,80)(40,107,73), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(57,61)(59,63)(66,70)(68,72)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(97,101)(99,103)(106,110)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120), (1,109,46,23,53)(2,24,110,54,47)(3,55,17,48,111)(4,41,56,112,18)(5,105,42,19,49)(6,20,106,50,43)(7,51,21,44,107)(8,45,52,108,22)(9,90,65,73,98)(10,74,91,99,66)(11,100,75,67,92)(12,68,101,93,76)(13,94,69,77,102)(14,78,95,103,70)(15,104,79,71,96)(16,72,97,89,80)(25,87,33,116,59)(26,117,88,60,34)(27,61,118,35,81)(28,36,62,82,119)(29,83,37,120,63)(30,113,84,64,38)(31,57,114,39,85)(32,40,58,86,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,100,60),(2,101,61),(3,102,62),(4,103,63),(5,104,64),(6,97,57),(7,98,58),(8,99,59),(9,86,51),(10,87,52),(11,88,53),(12,81,54),(13,82,55),(14,83,56),(15,84,49),(16,85,50),(17,94,119),(18,95,120),(19,96,113),(20,89,114),(21,90,115),(22,91,116),(23,92,117),(24,93,118),(25,45,66),(26,46,67),(27,47,68),(28,48,69),(29,41,70),(30,42,71),(31,43,72),(32,44,65),(33,108,74),(34,109,75),(35,110,76),(36,111,77),(37,112,78),(38,105,79),(39,106,80),(40,107,73)], [(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47),(50,54),(52,56),(57,61),(59,63),(66,70),(68,72),(74,78),(76,80),(81,85),(83,87),(89,93),(91,95),(97,101),(99,103),(106,110),(108,112),(114,118),(116,120)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120)], [(1,109,46,23,53),(2,24,110,54,47),(3,55,17,48,111),(4,41,56,112,18),(5,105,42,19,49),(6,20,106,50,43),(7,51,21,44,107),(8,45,52,108,22),(9,90,65,73,98),(10,74,91,99,66),(11,100,75,67,92),(12,68,101,93,76),(13,94,69,77,102),(14,78,95,103,70),(15,104,79,71,96),(16,72,97,89,80),(25,87,33,116,59),(26,117,88,60,34),(27,61,118,35,81),(28,36,62,82,119),(29,83,37,120,63),(30,113,84,64,38),(31,57,114,39,85),(32,40,58,86,115)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

C3×C22.F5 is a maximal subgroup of   Dic5.D12  Dic5.4D12  D15⋊C8⋊C2  D152M4(2)

42 conjugacy classes

class 1 2A2B3A3B4A4B4C 5 6A6B6C6D8A8B8C8D10A10B10C12A12B12C12D12E12F15A15B24A···24H30A···30F
order12233444566668888101010121212121212151524···2430···30
size1121155104112210101010444555510104410···104···4

42 irreducible representations

dim111111111122444444
type+++++-
imageC1C2C2C3C4C4C6C6C12C12M4(2)C3×M4(2)F5C2×F5C3×F5C22.F5C6×F5C3×C22.F5
kernelC3×C22.F5C3×C5⋊C8C6×Dic5C22.F5C3×Dic5C2×C30C5⋊C8C2×Dic5Dic5C2×C10C15C5C2×C6C6C22C3C2C1
# reps121222424424112224

Matrix representation of C3×C22.F5 in GL6(𝔽241)

22500000
02250000
001000
000100
000010
000001
,
100000
02400000
001000
000100
000010
000001
,
24000000
02400000
001000
000100
000010
000001
,
100000
010000
00240100
00240010
00240001
00240000
,
010000
6400000
00181526472
00412417712
001176422976
0016912860189

G:=sub<GL(6,GF(241))| [225,0,0,0,0,0,0,225,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,240,240,240,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,64,0,0,0,0,1,0,0,0,0,0,0,0,181,4,117,169,0,0,52,124,64,128,0,0,64,177,229,60,0,0,72,12,76,189] >;

C3×C22.F5 in GAP, Magma, Sage, TeX

C_3\times C_2^2.F_5
% in TeX

G:=Group("C3xC2^2.F5");
// GroupNames label

G:=SmallGroup(240,116);
// by ID

G=gap.SmallGroup(240,116);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-5,72,313,69,3461,599]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^5=1,e^4=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

Export

Subgroup lattice of C3×C22.F5 in TeX

׿
×
𝔽