direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3×C22.F5, C15⋊9M4(2), Dic5.3C12, C5⋊C8⋊2C6, C2.6(C6×F5), (C2×C6).1F5, (C2×C30).4C4, C22.(C3×F5), C5⋊2(C3×M4(2)), C6.20(C2×F5), C30.20(C2×C4), C10.6(C2×C12), (C2×C10).2C12, (C3×Dic5).7C4, Dic5.8(C2×C6), (C2×Dic5).5C6, (C6×Dic5).12C2, (C3×Dic5).28C22, (C3×C5⋊C8)⋊6C2, SmallGroup(240,116)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C22.F5
G = < a,b,c,d,e | a3=b2=c2=d5=1, e4=c, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d3 >
(1 100 60)(2 101 61)(3 102 62)(4 103 63)(5 104 64)(6 97 57)(7 98 58)(8 99 59)(9 86 51)(10 87 52)(11 88 53)(12 81 54)(13 82 55)(14 83 56)(15 84 49)(16 85 50)(17 94 119)(18 95 120)(19 96 113)(20 89 114)(21 90 115)(22 91 116)(23 92 117)(24 93 118)(25 45 66)(26 46 67)(27 47 68)(28 48 69)(29 41 70)(30 42 71)(31 43 72)(32 44 65)(33 108 74)(34 109 75)(35 110 76)(36 111 77)(37 112 78)(38 105 79)(39 106 80)(40 107 73)
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)(50 54)(52 56)(57 61)(59 63)(66 70)(68 72)(74 78)(76 80)(81 85)(83 87)(89 93)(91 95)(97 101)(99 103)(106 110)(108 112)(114 118)(116 120)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)
(1 109 46 23 53)(2 24 110 54 47)(3 55 17 48 111)(4 41 56 112 18)(5 105 42 19 49)(6 20 106 50 43)(7 51 21 44 107)(8 45 52 108 22)(9 90 65 73 98)(10 74 91 99 66)(11 100 75 67 92)(12 68 101 93 76)(13 94 69 77 102)(14 78 95 103 70)(15 104 79 71 96)(16 72 97 89 80)(25 87 33 116 59)(26 117 88 60 34)(27 61 118 35 81)(28 36 62 82 119)(29 83 37 120 63)(30 113 84 64 38)(31 57 114 39 85)(32 40 58 86 115)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
G:=sub<Sym(120)| (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,51)(10,87,52)(11,88,53)(12,81,54)(13,82,55)(14,83,56)(15,84,49)(16,85,50)(17,94,119)(18,95,120)(19,96,113)(20,89,114)(21,90,115)(22,91,116)(23,92,117)(24,93,118)(25,45,66)(26,46,67)(27,47,68)(28,48,69)(29,41,70)(30,42,71)(31,43,72)(32,44,65)(33,108,74)(34,109,75)(35,110,76)(36,111,77)(37,112,78)(38,105,79)(39,106,80)(40,107,73), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(57,61)(59,63)(66,70)(68,72)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(97,101)(99,103)(106,110)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120), (1,109,46,23,53)(2,24,110,54,47)(3,55,17,48,111)(4,41,56,112,18)(5,105,42,19,49)(6,20,106,50,43)(7,51,21,44,107)(8,45,52,108,22)(9,90,65,73,98)(10,74,91,99,66)(11,100,75,67,92)(12,68,101,93,76)(13,94,69,77,102)(14,78,95,103,70)(15,104,79,71,96)(16,72,97,89,80)(25,87,33,116,59)(26,117,88,60,34)(27,61,118,35,81)(28,36,62,82,119)(29,83,37,120,63)(30,113,84,64,38)(31,57,114,39,85)(32,40,58,86,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;
G:=Group( (1,100,60)(2,101,61)(3,102,62)(4,103,63)(5,104,64)(6,97,57)(7,98,58)(8,99,59)(9,86,51)(10,87,52)(11,88,53)(12,81,54)(13,82,55)(14,83,56)(15,84,49)(16,85,50)(17,94,119)(18,95,120)(19,96,113)(20,89,114)(21,90,115)(22,91,116)(23,92,117)(24,93,118)(25,45,66)(26,46,67)(27,47,68)(28,48,69)(29,41,70)(30,42,71)(31,43,72)(32,44,65)(33,108,74)(34,109,75)(35,110,76)(36,111,77)(37,112,78)(38,105,79)(39,106,80)(40,107,73), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(57,61)(59,63)(66,70)(68,72)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(97,101)(99,103)(106,110)(108,112)(114,118)(116,120), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120), (1,109,46,23,53)(2,24,110,54,47)(3,55,17,48,111)(4,41,56,112,18)(5,105,42,19,49)(6,20,106,50,43)(7,51,21,44,107)(8,45,52,108,22)(9,90,65,73,98)(10,74,91,99,66)(11,100,75,67,92)(12,68,101,93,76)(13,94,69,77,102)(14,78,95,103,70)(15,104,79,71,96)(16,72,97,89,80)(25,87,33,116,59)(26,117,88,60,34)(27,61,118,35,81)(28,36,62,82,119)(29,83,37,120,63)(30,113,84,64,38)(31,57,114,39,85)(32,40,58,86,115), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );
G=PermutationGroup([[(1,100,60),(2,101,61),(3,102,62),(4,103,63),(5,104,64),(6,97,57),(7,98,58),(8,99,59),(9,86,51),(10,87,52),(11,88,53),(12,81,54),(13,82,55),(14,83,56),(15,84,49),(16,85,50),(17,94,119),(18,95,120),(19,96,113),(20,89,114),(21,90,115),(22,91,116),(23,92,117),(24,93,118),(25,45,66),(26,46,67),(27,47,68),(28,48,69),(29,41,70),(30,42,71),(31,43,72),(32,44,65),(33,108,74),(34,109,75),(35,110,76),(36,111,77),(37,112,78),(38,105,79),(39,106,80),(40,107,73)], [(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47),(50,54),(52,56),(57,61),(59,63),(66,70),(68,72),(74,78),(76,80),(81,85),(83,87),(89,93),(91,95),(97,101),(99,103),(106,110),(108,112),(114,118),(116,120)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120)], [(1,109,46,23,53),(2,24,110,54,47),(3,55,17,48,111),(4,41,56,112,18),(5,105,42,19,49),(6,20,106,50,43),(7,51,21,44,107),(8,45,52,108,22),(9,90,65,73,98),(10,74,91,99,66),(11,100,75,67,92),(12,68,101,93,76),(13,94,69,77,102),(14,78,95,103,70),(15,104,79,71,96),(16,72,97,89,80),(25,87,33,116,59),(26,117,88,60,34),(27,61,118,35,81),(28,36,62,82,119),(29,83,37,120,63),(30,113,84,64,38),(31,57,114,39,85),(32,40,58,86,115)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])
C3×C22.F5 is a maximal subgroup of
Dic5.D12 Dic5.4D12 D15⋊C8⋊C2 D15⋊2M4(2)
42 conjugacy classes
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 4C | 5 | 6A | 6B | 6C | 6D | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 12A | 12B | 12C | 12D | 12E | 12F | 15A | 15B | 24A | ··· | 24H | 30A | ··· | 30F |
order | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 15 | 15 | 24 | ··· | 24 | 30 | ··· | 30 |
size | 1 | 1 | 2 | 1 | 1 | 5 | 5 | 10 | 4 | 1 | 1 | 2 | 2 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 4 | 4 | 10 | ··· | 10 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | - | ||||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C12 | C12 | M4(2) | C3×M4(2) | F5 | C2×F5 | C3×F5 | C22.F5 | C6×F5 | C3×C22.F5 |
kernel | C3×C22.F5 | C3×C5⋊C8 | C6×Dic5 | C22.F5 | C3×Dic5 | C2×C30 | C5⋊C8 | C2×Dic5 | Dic5 | C2×C10 | C15 | C5 | C2×C6 | C6 | C22 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 4 | 4 | 2 | 4 | 1 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of C3×C22.F5 ►in GL6(𝔽241)
225 | 0 | 0 | 0 | 0 | 0 |
0 | 225 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
240 | 0 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 1 | 0 | 0 |
0 | 0 | 240 | 0 | 1 | 0 |
0 | 0 | 240 | 0 | 0 | 1 |
0 | 0 | 240 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
64 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 181 | 52 | 64 | 72 |
0 | 0 | 4 | 124 | 177 | 12 |
0 | 0 | 117 | 64 | 229 | 76 |
0 | 0 | 169 | 128 | 60 | 189 |
G:=sub<GL(6,GF(241))| [225,0,0,0,0,0,0,225,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,240,240,240,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,64,0,0,0,0,1,0,0,0,0,0,0,0,181,4,117,169,0,0,52,124,64,128,0,0,64,177,229,60,0,0,72,12,76,189] >;
C3×C22.F5 in GAP, Magma, Sage, TeX
C_3\times C_2^2.F_5
% in TeX
G:=Group("C3xC2^2.F5");
// GroupNames label
G:=SmallGroup(240,116);
// by ID
G=gap.SmallGroup(240,116);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-2,-5,72,313,69,3461,599]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^5=1,e^4=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations
Export